
International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 1
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

Setting CPU Affinity in Windows Based SMP
Systems Using Java
Bala Dhandayuthapani Veerasamy, Dr. G.M. Nasira

Abstract—Multithreaded program involves multiple threads of control within a single program on single or multiple environments. In
multithreaded programming model, a single process can have multiple, concurrent execution paths on CPUs. Thread affinity benefit a
thread to run on a specific subset of processors. Multithreaded programming is written in many programming languages with an
improvement of setting an affinity to threads. Java supports to develop multithreaded programming, while it does not contain any method to
set an affinity for threads on CPU. This paper articulates the method to setting CPU affinity for threads in windows based SMP systems
using Java.

Index Terms— Affinity mask, JNA, Multithread, Thread, Windows programming

—————————— ——————————

1 INTRODUCTION
OST concurrent applications [3] are organized around
the execution of tasks: abstract, discrete units of work.
Dividing the work of an application into tasks

simplifies program organization, facilitates error recovery by
providing natural transaction boundaries, and promotes
concurrency by providing a natural structure for parallelizing
work. The first step in organizing a program around task
execution is identifying sensible task boundaries. Ideally, tasks
are independent activities: work that doesn't depend on the
state, result, or side effects of other tasks. Independence
facilitates concurrency, as independent tasks can be executed
in parallel if there are adequate processing resources. For
greater flexibility in scheduling and load balancing tasks, each
task should also represent a small fraction of your
application's processing capacity.

A multithreaded program [5] contains two or more parts that
can run concurrently. Each part of such a program is called a
thread, and each thread defines a separate path of execution.
Each thread in a multithreaded process [9] can be dispatched to
a different processor in a multiprocessor system. This
collaboration across multiple processors improves single-
application performance. Multithreading enables [5] you to
write very efficient programs that make maximum use of the
CPU, because idle time can be kept to a minimum. Threads exist
in several states. A thread can be running. It can be ready to run
as soon as it gets CPU time. A running thread can be
suspended, which temporarily suspends its activity. A
suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a
resource. At any time, a thread can be terminated, which halts

its execution immediately. Once terminated, a thread cannot be
resumed. Thread priority determines how that thread should be
treated with respect to the others. Thread priorities are integers
that specify the relative priority of one thread to another. As an
absolute value, a priority is meaningless; a higher-priority
thread doesn’t run any faster than a lower-priority thread if it is
the only thread running. Instead, a thread’s priority is used to
decide when to switch from one running thread to the next.
This is called a context switch. Problems can arise from the
differences in the way that operating systems context-switch
thread of equal priority. Because multithreading introduces an
asynchronous behavior to your programs, there must be a way
for you to enforce synchronicity when you need it. The monitor
is a control mechanism first defined by C.A.R. Hoare. You can
think of a monitor as a very small box that can hold only one
thread. Once a thread enters a monitor, all other threads must
wait until that thread exits the monitor.

Windows supports concurrency among processes because
threads in different processes may execute concurrently.
Moreover, multiple threads within the same process may be
allocated to separate processors and execute simultaneously.
A multithreaded process achieves concurrency without the
overhead of using multiple processes. Threads within the
same process can exchange information through their
common address space and have access to the shared
resources of the process. Threads in different processes can
exchange information through shared memory that has been
set up between the two processes. Multiprocessor
programming is challenging because modern computer
systems are inherently asynchronous: activities can be halted
or delayed without warning by interrupts, preemption, cache
misses, failures, and other events. These delays are inherently
unpredictable, and can vary enormously in scale: a cache miss
might delay a processor for fewer than ten instructions, a page
fault for a few million instructions, and operating system
preemption for hundreds of millions of instructions.

The general-purpose process and thread facility must
support the particular process and thread structures of the

M

————————————————
 Bala Dhandayuthapani Veerasamy is currently a Research Scholar in

Information Technology, Manonmaniam Sundaranar University, India. E-
mail: dhanssoft@gmail.com

 Dr. G.M. Nasira is currently working as an Assistant Professor-Computer
Applications, Department of Computer Science, Govt Arts College
(Autonomous), Salem -636007, Tamilnadu, India. E-mail:
nasiragm99@yahoo.com

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 2
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

various OS clients. It is the responsibility of each OS
subsystem to exploit the Windows process and thread features
to emulate the process and thread facilities of its
corresponding OS. An application client process issues its
process creation request to the OS subsystem; then a process
in the subsystem in turn issues a process request to the
Windows executive. Windows enables the subsystem to
specify the parent of the new process. The new process then
inherits the parent’s access token, quota limits, base priority,
and default processor affinity.

1.1 Win32 API and Dynamic-Link Libraries
Windows programming [12] is useful to start off with some
appreciation of some new terms intrinsic to Windows: objects,
handles, instances, messages, and callback functions. These
give us the mechanics of programming in this environment,
that is, they are tools that we need to use. A Dynamic Link
Library (DLL) is a module that contains functions and data
that can be used by another module (application or DLL).
DLLs provide a way to modularize applications so that their
functionality can be updated and reused more easily. DLLs
also help reduce memory overhead when several applications
use the same functionality at the same time, because although
each application receives its own copy of the DLL data, the
applications share the DLL code. The Windows application
programming interface (API) is implemented as a set of DLLs,
so any process that uses the Windows API uses dynamic
linking. Dynamic linking allows a module to include only the
information needed to locate an exported DLL function at load
time or run time.

Every process that loads the DLL maps it into its virtual
address space. After the process loads the DLL into its virtual
address, it can call the exported DLL functions. The system
maintains a per-process reference count for each DLL. When a
thread loads the DLL, the reference count is incremented by
one. When the process terminates, or when the reference count
becomes zero, the DLL is unloaded from the virtual address
space of the process. Like any other function, an exported DLL
function runs in the context of the thread that calls it.
Therefore, the following conditions apply: 1) The threads of
the process that called the DLL can use handles opened by a
DLL function. Similarly, handles opened by any thread of the
calling process can be used in the DLL function. 2) The DLL
uses the stack of the calling thread and the virtual address
space of the calling process. 3) The DLL allocates memory
from the virtual address space of the calling process. Programs
can be written in different programming languages can call
the same DLL function as long as the programs follow the
same calling convention that the function uses. The calling
convention (such as C, C++, .Net and etc) controls the order in
which the calling function must push the arguments onto the
stack, whether the function or the calling function is
responsible for cleaning up the stack, and whether any
arguments are passed in registers. The Kernel32.dll is an
important DLL for doing multithreaded programs; here the
following important function we used in our research.

 Public Declare Function SetThreadAffinityMask Lib

"kernel32" Alias "SetThreadAffinityMask" (ByVal
hThread As Long, ByVal dwThreadAffinityMask As
Long) As Long

1.2 Symmetric Multiprocessing Support
Symmetric Multiprocessing (SMP) is a multiprocessing
architecture in which multiple CPUs, residing in one cabinet,
share the same memory. It is the tightly coupled process of
program tasks being shared and executed, in true parallel mode,
by multiple processors who all work on a program at the same
time. Typically, these have large, single units with multiple
processors that utilize shared memory, I/O resources, and, of
course, a single operating system. The term SMP is so closely
associated with shared memory that it is sometimes
misinterpreted as standing for “shared memory parallel”. SMP
systems range from two to as many as 32 or more processors.
However, if one CPU fails, the entire SMP system is down.
Clusters of two or more SMP systems can used to provide high
availability (fault resilience). If one SMP system fails, the others
continue to operate.

Windows supports an SMP hardware configuration. The
threads of any process, including those of the executive, can
run on any processor. In the absence of affinity restrictions, the
microkernel assigns a ready thread to the next available
processor. This assures that no processor is idle or is executing
a lower-priority thread when a higher-priority thread is ready.
Multiple threads from the same process can be executing
simultaneously on multiple processors. As a default, the
microkernel uses the policy of soft affinity in assigning threads
to processors: The dispatcher tries to assign a ready thread to
the same processor it last ran on. This helps reuse data still in
that processor’s memory caches from the previous execution
of the thread. It is possible for an application to restrict its
thread execution to certain processors (hard affinity).

Thread affinity forces a thread to run on a specific subset of
processors. Setting thread affinity should generally be
avoided, because it can interfere with the scheduler's ability to
schedule threads effectively across processors. This can
decrease the performance gains produced by parallel
processing. An appropriate use of thread affinity is testing
each processor. The system represents affinity with a bitmask
called a processor affinity mask. The affinity mask is the size
of the maximum number of processors in the system, with bits
set to identify a subset of processors. Initially, the system
determines the subset of processors in the mask. You can
obtain the current thread affinity for all threads of the process
by calling the GetProcessAffinityMask function. Use the
SetProcessAffinityMask function [8] to specify thread affinity
for all threads of the process. To set the thread affinity for a
single thread, use the SetThreadAffinityMask function. The
thread affinity must be a subset of the process affinity. On
systems with more than 64 processors, the affinity mask
initially represents processors in a single processor group.
However, thread affinity can be set to a processor in a
different group, which alters the affinity mask for the process.

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 3
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

2 IDENTIFYING PROBLEM
2.1 Multithreading in java
The Java run-time system [4] depends on threads for many
things, and all the class libraries are designed with
multithreading in mind. In fact, Java uses threads to enable the
entire environment to be asynchronous. This helps reduce
inefficiency by preventing the waste of CPU cycles. Java’s
multithreading system is built upon the Thread class, its
methods, and its companion interface Runnable. Thread
encapsulates a thread of execution. The Thread class defines
several methods that help on managing threads.

After a computational job is designed and realized as a set
of tasks, an optimal assignment of these tasks to the
processing elements in a given architecture needs to be
determined. This problem is called the scheduling problem [6]
and is known to be one of the most challenging problems in
parallel and distributed computing. The goal of scheduling is
to determine an assignment of tasks to processing elements in
order to optimize certain performance indexes. Performance
and efficiency are two characteristics used to evaluate a
scheduling system [9]. We should evaluate a scheduling
system based on the quality of the produced task assignment
(schedule) and the efficiency of the scheduling algorithm
(scheduler). The produced schedule is judged based on the
performance criterion to be optimized, while the scheduling
algorithm is evaluated based on its time complexity.

In java, most of the executor [2] implementations in
java.util.concurrent use thread pools. Thread pools address
two different problems: they usually provide improved
performance when executing large numbers of asynchronous
tasks, due to reduced per-task invocation overhead, and they
provide a means of bounding and managing the resources,
including threads, consumed when executing a collection of
tasks. Each ThreadPoolExecutor also maintains some basic
statistics, such as the number of completed tasks. A
ThreadPoolExecutor can additionally schedule commands to
run after a given delay or to execute periodically.
ScheduledThreadPoolExecutor class is preferable to Timer
when multiple worker threads are needed, or when the
additional flexibility or capabilities of ThreadPoolExecutor are
required.

Java support flexible and easy use of threads; yet, java does
not contain methods for thread affinity to the processors.
Setting an affinity thread to multiprocessor [9] is not new to
research, since it was already sustained by other
multiprogramming languages for example C in UNIX
platform [10] and C# in Windows platform [11]. This paper
illustrates how java multithreaded program adapt with an
affinity thread on multiprocessors in windows platforms.

3 PROBLEM SOLVING METHODS
3.1 Just Peculiar Algorithm (JPA)
Every Java application has a single instance of class Runtime
that allows the application to interface with the environment
in which the application is running. The current runtime can

be obtained from the getRuntime() method. This method
returns the runtime object associated with the current Java
application. Most of the methods of class Runtime are instance
methods and must be invoked with respect to the current
runtime object. The number of processors available to the Java
virtual machine can be obtained through the
availableProcessors() method. This value may change during a
particular invocation of the virtual machine. Java applications
are sensitive to the number of available processors should
therefore occasionally poll this property and adjust their
resource usage appropriately. Multithreaded programming is
written in many programming languages with an
improvement of setting an affinity to threads. However, Java
does not contain any method to set an affinity for threads on
CPU. Hence, we carried this research to synchronize all
threads associated with the available processors. The
following Program 1 is inherited Thread class to assign the
affinity settings. The following is Just Peculiar Algorithm
(JPA) algorithm shows how to set thread affinities by our own
steps.

1. Get the available number of processor (Processors) in
system

2. Select the processor number (ProcessorNum), where
we assign thread to execute

3. Check whether selected processor number
(ProcessorNum) is greater than and equal to the
available processors (Processors) in the system or not.
If selected processor is greater than and equal to
available processor (Processors), throw
IllegalArgumentException.

4. Initialize the incremental for loop with variable=0 and
check the variable is less than available number of
processor (Processors)

5. Check if the variable is equal to selected processor
number (ProcessorNum) then create a thread.

The following Program 1 developed, based on the above
algorithm with an affinity thread named as JThreadCore class
and it packaged in javax.core, which can be exploit in user’s
applications. The JThreadCore class constructors and methods
discussed bellow.

Constructors:
JThreadCore(String name)
JThreadCore(String name, int ProcessorNum).
The first constructor with the String name argument will
assign the name of the thread. And the second constructor
with String name argument will assign the name of the thread
and int ProcessorNum will select the processor to execute the
thread. To assign the processor, ultimately it calls the
setAffinity(int ProcessorNum) to select the processor.

Methods:
synchronized void setAffinity(int ProcessorNum)
int getAffinity()
When two or more threads need to access to a shared
processor, they need some way to ensure that the processor
will be used by only one thread at a time. Consequently, the

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 4
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

setAffinity() method implemented with synchronized method,
it can allow one thread can own a monitor at a given time. The
argument of setAffinity(), int ProcessorNum will select the
processor number to execute the Thread. And the getAffinity()
method will retune the affinity of the running thread.

Program 1: JThreadCore.java
// package name
package javax.core;
// inherited with Thread class
public class JThreadCore extends Thread{
// get the available system processor
private int Processors ;
// select the processor to execute the thread
private int ProcessorNum;
//assign the name of the thread
private static String name;
Thread t;
public JThreadCore(String name){
//interchange the thread name value to class variable
this.name=name;
}
public JThreadCore(String name,int ProcessorNum){
//interchange the thread name value to class variable
this.name=name;
//interchange the processor number to class variable
this.ProcessorNum=ProcessorNum;
//call setAffinity method
setAffinity(ProcessorNum);
}
//synchronized method to select the processor
public synchronized void setAffinity(int ProcessorNum){
// interchange processor number to class variable
this.ProcessorNum=ProcessorNum;
//get the available processor in the system
Processors = Runtime.getRuntime().availableProcessors();
//check selected processor is greater than equal to the selected
//processor
if (ProcessorNum>=Processors)
throw new IllegalArgumentException("This processor is not
available");
//create threads using loop
for(int i=0; i < Processors ; i++)
//check i value is equal to user selected processor
 if (i==ProcessorNum){

//create thread
 t=new Thread(name); }

 }
//get the affinity of the thread
public int getAffinity(){
//return the core number, in which current thread is running
 return ProcessorNum;
 }
}

The following Program 2 developed to exercise the
JThreadCore library. The Test class main main function has
been created the object for Test("one",5,1,0) constructor. Once
object created the constructor Test(String name,int wait,int

pri,int afi) automatically called. This assigns the name of
thread as “one”, waiting time as 5, priority as 1 and processor
1 to execute. The start() method in the constructor start the
thread. Once thread started, it automatically call public void
run() method, will execute until it reach the Thread.sleep()
method. This Thread.sleep() will give chance, if other thread
assigned on the same processor. Likewise, “two”, “three” and
“four” thread will execute on the assigned processor.

This program measured execution time using
System.currentTimeMillis(). The formula to calculate the
execution time is elapsedTime = (stopTime - startTime)/wait.
Here startTime is starting time of the thread execution,
stopTime is end of thread execution and wait is waiting time
of each threads (same waiting time for all the threads). If
suppose different waiting time assigned to thread, we should
hold summation of all thread waiting time.

Program 2: Testing JThreadCore
import javax.core.JThreadCore;
class Test extends JThreadCore{
private static String name;
private static int wait;
private static int pri,afi;
Test(String name,int wait,int pri,int afi){
super(name);
this.name=name; this.wait=wait;
this.pri=pri; this.afi=afi;
setPriority(pri);
setAffinity(afi);
start();
}
public void run(){
 try{
 for(int i=0;i<5;i++){
 System.out.println(i+"\t\t" + getId()+"\t\t\tCPU "+
 getAffinity()+ "\t\t" +currentThread()); sleep(wait);
 }
 }catch(InterruptedException e){System.out.println(e); }
 }
public static void main(String s[]){
long startTime,stopTime,elapsedTime;
try{
 startTime = System.currentTimeMillis();
 System.out.println("Value\tThread Id\tCPU #\t\t\tThread");
 System.out.println("--");
Test a1= new Test("one",5,1,0);
Test a2= new Test("two",5,1,1);
Test a3= new Test("three",5,10,0);
Test a4= new Test("four",5,10,1);
a1.join(); a2.join(); a3.join(); a4.join();
stopTime = System.currentTimeMillis();
elapsedTime = (stopTime - startTime)/wait;
System.out.println("Used exection time in ms: " +elapsedTime);
 }catch(Exception e){System.out.println(e); }
 }
}

This program is tested with with Inter Core™ 2 Duo CPU

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 5
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

T8100 @ 2.10 GHz (see Figure 1).Threads can run concurrently
on assigned CPU absolutely, wherein threads “one” and
“three” assigned on CPU 0, threads “two” and “four”
assigned on CPU 2. The performance of this program
evaluated on different multi-core environment by selecting
different affinity on CPU, which is described on the Result and
Discussion section. This research exercised with the available
Java Thread library only to solve affinity thread problem.
Since Java is a platform independent language, this program
benefited to execute on any platform. The assigned thread
names, not properly fixed on running threads are a big
weakness of this research.

3.2 Java Native Access (JNA)
Java Native Access provides [4] Java programs easy access to
native shared libraries without using the Java Native Interface.
JNA's design aims to provide native access in a natural way with
a minimum of effort. The JNA library uses a small native library
called foreign function interface library (libffi) to dynamically
invoke native code. The JNA library uses native functions
allowing code to load a library by name and retrieve a pointer to
a function within that library, and uses libffi library to invoke it,
all without static bindings, header files, or any compile phase.
The developer uses a Java interface to describe functions and
structures in the target native library. This makes it quite easy to
take advantage of native platform features without incurring the
high development overhead of configuring and building JNI
code. JNA is built and tested on Mac OS X, Microsoft Windows,
FreeBSD / OpenBSD, Solaris, and Linux. It is also possible to
tweak and recompile the native build configurations to make it
work on other platforms. For example, it is known to work on
Windows Mobile, even if it is not tested for this platform by the
development team.

If you've used the Java Native Interface (JNI) [7] to make a
platform-specific native library accessible to your Java
programs, you know how tedious it can be. Jeff Friesen
continues his series on lesser-known open source Java projects
by introducing you to Java Native Access -- a project that
eliminates the tedium and error associated with JNI and lets

you access C libraries programmatically. In situations where
Java does not provide the necessary APIs, it is sometimes
necessary to use the Java Native Interface (JNI) to make
platform-specific native libraries accessible to Java programs.

JNA approaches to integrate native libraries with Java
programs. It shows how JNA enables Java code to call native
functions without requiring glue code in another language. It
is useful to know JNA, because the Java APIs with their
architecture-neutral emphasis will never support platform-
specific functionality. Though Java itself is architecture-
neutral, JNA is perforce on platform-specific. The Java Native
Access project is hosted on Java.net, where you can download
the project's online Javadoc and the software itself. Although
the download section identifies five JAR files, you only need
to download jna.jar. The jna.jar file provides the essential JNA
software and is required to run all of the examples you'll find
here. This JAR file contains several packages of classes, along
with JNI-friendly native libraries for the Unix, Linux,
Windows, and Mac OS X platforms. Each library is
responsible for dispatching native method calls to native
libraries. Here are a few things you have to take care of when
starting a JNA project:

1. Download jna.jar from the JNA project site and add it
to your project's build path. This file is the only JNA
resource you need. Remember that jna.jar must also be
included in the run-time classpath.

2. Find the names of the DLLs that your Java code will
access. The DLL names are required to initialize JNA's
linkage mechanisms.

3. Create Java interfaces to represent the DLLs such as
kernel32.dll, user32.dll and etc on your application that
will access.

4. Test linkage of your Java code to the native functions.

Many DLLs, such as those in the Windows API, host a large

number of functions. But the proxy interface need only contain
declarations for the methods your application actually uses.

3.2.1 A Proxy for the DLL
JNA uses the proxy pattern to hide the complexity of native code
integration. It provides a factory method that Java programs use
to obtain a proxy object for a DLL. The programs can then invoke
the DLL's functions by calling corresponding methods of the
proxy object. The code below shows an abbreviated view of a
proxy interface for the Windows kernel32.dll.

Program 3. A proxy program for dll
//Kernel32.java

Fig. 1. Output of Test.java

Fig. 2. Creation of a java proxy object for a dll

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 6
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

package javax.core;
import com.sun.jna.Library;
public interface Kernel32 extends Library {
 // Select the CPU
 int SetThreadAffinityMask(int threadid,int mask);
 int GetCurrentThreadId(); // Get thread Id
 int Sleep(long Milliseconds); // Assign waiting time
 }

JNA takes care of all run-time aspects, but it requires your
help to create the proxy's Java class. So the first piece of code
you need to create is a Java interface with method definitions
that match the DLL's C functions. To play with JNA's run-time
correctly, the interface must extend com.sun.jna.Library.

3.2.2 Linkage of java code to the native functions
The following KThreadCore.java uses the User32 interface
shown above to create a proxy for the Windows Kernal32.DLL.
When setAffinity(long mask) method is executed, which in turn
invokes the DLL's SetThreadAffinityMask() function. The run-
time mapping of the proxy method to the DLL function is
handled transparently by JNA, the user just has to ensure that the
method name matches the function name exactly.

Program 4. Linkage of java code to the native function
// KThreadCore.java
package javax.core;
import com.sun.jna.Native;
import javax.core.Kernel32;
public class KThreadCore extends Thread {
 Kernel32 kernel321=(Kernel32)
 Native.loadLibrary("kernel32", Kernel32.class);
 int mask;
public KThreadCore(){ }
public KThreadCore(String thread_Name){
 super(thread_Name);
 }
public int setAffinity(int tid,int mask) {
int mask1= Runtime.getRuntime().availableProcessors();
if (mask>mask1)
 throw new IllegalArgumentException("The CPU mask should
starts from 1..N");
this.mask=mask;
return kernel321.SetThreadAffinityMask(tid,mask);
 }
public int getAffinity(){
 return mask;
 }
public int getCurrentThreadId(){
 return kernel321.GetCurrentThreadId();
 }
public int context(int duration){
 return kernel321.Sleep(duration);
 }
}

In Program 4, KThreadCore class extends with Thread class
consequently KThreadCore class will inherit all the methods of
Thread class, which will be used in Program 3. The kernel321
object is a loaded with class library that includes the declared

function of Kernel32.java (Program 3). The KThreadCore()
constructor will create threads without name of the thread and
KThreadCore(String thread_Name) will create threads with
specified of the threads using the constructor argument. The
setAffinity(long tid,long mask) is alias method for
SetThreadAffinityMask(long threadid,long mask) on proxy
DLL. The setAffinity(long tid,long mask) method has an
exception mechanism to check whether the specified CPU is
available or not. If CPU is present then it will call the proxy dll
SetThreadAffinityMask(long threadid,long mask) to assign the
affinity for a particular thread. If CPU is not present then it will
convey the exception with "The system has + mask1 + CPU only
and the specified CPU + mask + is not available in the system".
The getAffinity() method will return the affinity of the thread.
The getCurrentThreadId() call the proxy DLL’s
GetCurrentThreadId(), which will assign thread id to every
threads. The context(int duration) call the proxy DLL’s
Sleep(long Milliseconds) method, which will assign the thread
to wait for specified milliseconds to avail other threads to
execute on CPU.

3.2.3 Application code
Until now, we created the proxy DLL (Program 3) and linkage of
java code to the native function (Program 4). This section shows
you to test the thread with an affinity on CPUs.

Program 5. Testing the affinity thread
// Test.java
import javax.core.KThreadCore;
class Test extends KThreadCore{
String name;
static int wait,affinity;
int pri;
Test(String name,int wait,int pri,int affinity) throws Exception{
 super(name);
 this.name=name;
 this.wait=wait;
 this.pri=pri;
 this.affinity=affinity;
 setPriority(pri);
 setAffinity(getCurrentThreadId(),affinity);
 start();
 }
public synchronized void run(){
try{
for(int i=0;i<5;i++){
 System.out.println(i+"\t\t"+getCurrentThreadId()
 +"\t\tCPU " +getAffinity()+"\t\t" +currentThread());
 context(wait);
 }
 }catch(Exception e){System.out.println("Error :"+e);}
}
public static void main(String aa[]){
long startTime,stopTime,elapsedTime;
try{
startTime = System.currentTimeMillis();
System.out.println("Value\tThread Id\tCPU #\t\t\tThread");
System.out.println("--");

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 7
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

//(thread name, waiting time, priority, affinity)
Test a1=new Test("ONE",5,1,0);
Test a2=new Test("TWO",5,1,1);
Test a3=new Test("THREE",5,10,0);
Test a4=new Test("FOUR",5,10,1);
// joins waiting thread through Thread class method
a1.join(); a2.join(); a3.join(); a4.join();
stopTime = System.currentTimeMillis();
elapsedTime = (stopTime - startTime)/wait;
System.out.println("Used exection time in ms: " +elapsedTime);
 }catch(Exception e){System.out.println("Error : " + e); }
 }
}

In Program 5, Test class extends with KThreadCore class
consequently all Thread class methods can be accessed. In the
main function an object is created for Test(String name,long
wait,int pri,long affinity) constructor. This constructor has the
argument for name of the thread, waiting time, priority, and
affinity for a thread. Once an object is created, a constructor is
automatically called. In the constructor super(name) method,
the thread is created by passing the “name” to the
KThreadCore(String thread_Name) constructor. The
setPriority(pri) is actually from Thread class, which will set the
priority for a thread and setAffinity
((getCurrentThreadId(),affinity) is our method from
KThreadCore class, which will set the affinity for a thread, here
getCurrentThreadId() method get current thread id for a thread
to set affinity on CPU. Once start() method starts the thread, it
will automatically call the public void run() method. The run()
method contain a loop to print the value from 0 up to 5. Test
class created with four objects a1, a2, a3 and a4 respectively as
ONE, TWO, THREE and FOUR threads. The ONE and TWO
threads have 1 (MIN_PRIORITY) priorities and the affinities of
threads are 0 and 1 respectively; The THREE and FOUR threads
have 10 (MAX_PRIORITY) priorities and the affinities of
threads are 0 and 1 respectively. Hence, ONE and THREE
threads executed on processor CPU 0 with respect to priority;
similarly, TWO and FOUR threads are expected to execute on
processor CPU 1 with respect to priority. This program is tested
with with Inter Core™ 2 Duo CPU T8100 @ 2.10 GHz each (see
Figure 3).

4 RESULTS AND DISCUSSION
4.1 Thread Migration
Thread migration is when threads in computer core are able to
move from core to another core. Just Peculiar Algorithm (JPA)
enables to set the affinity to the thread on multi-core systems.
This research finding will enables threads migration in ready,
waiting and running states of threads. The following fragmented
code added in Program 2 shows, how a thread can migrate
between cores.

for(int i=0;i<5;i++)
if(i==2 and getID()=14)
 setAffinity(1);
…..
2 14 CPU 0 Thread[Thread-3,10,main]
2 10 CPU 0 Thread[Thread-1,10,main]
2 8 CPU 0 Thread[Thread-0,1,main]
3 14 CPU 1 Thread[Thread-3,10,main]
…..
Here, when a threadID 14 reaches the loop iteration 2, then

it migrate the thread from core 0 to core 1. This is done for a
single thread. But when more number of threads needed to be
migrate, then like other platform thread should have a queue.
For example, Linux thread migration mechanism[1], normally
used for relatively long-term load-balancing across cores. To
our knowledge, Linux thread migration mechanism is the
current state of the art for core-switching. When a task wants
to migrate, it puts itself on a per-core migration queue, wakes
up and switches control to a per core migration thread, which
does the actual work of moving the thread to the run queue of
the target core.

4.2 The Performance issue
The performance of Just Peculiar Algorithm (JPA) (described in
secretion 3.1) and Java Native Access (JNA) (described in section
3.2) evaluated on different multi-core environment by selecting
different affinity on CPU and adding few more threads with
different iterations.

TABLE 1
EXECUTION TIME IN MILLISECONDS

International Journal of Scientific & Engineering Research Volume 3, Issue 4, April-2012 8
ISSN 2229-5518

IJSER © 2012
http://www.ijser.org

We analyze about the execution on different computer core
with the time in milliseconds, which is described in the above
Table 1. Just Peculiar Algorithm (JPA) is just a techniques to set
the affinity through Java Thread library, hence the execution
speed is somewhat little than Java Native Access (JNA).
Because, the Java Native Access (JNA) is approaching windows
DLL to perform the affinity schedule on the processor, hence it
acquired more time than Just Peculiar Algorithm (JPA).

5 CONCLUSION
Working with multiple threads on symmetric multiprocessor is
very natural to improve the performance based on number of
CPUs. Thread affinity benefit a thread to run on a specific subset
of processors, enable us to schedule threads on a particular CPU.
Setting an affinity to CPU is not new to research. Since affinity
thread is already sustained by other multiprogramming
languages on different platforms. Java does not have method to
set affinity for a thread. While Java exercised already with affinity
threads in UNIX platforms through Java Native Interface. There
is lack in windows platform for Java affinity thread. This paper
exemplified the method to set an affinity for threads to execute on
particular CPU through Java Java Peculiar Algorithm (JPA) and
Native Access (JNA) in windows platforms. The performance
metric also deliberated.

REFERENCES
1. ACM SIGOPS Operating Systems Review special issue on The Interaction

Among the OS, the Compiler, and Multicore Processors, April, 2009, Volume
43, Number 2.

2. API reference, http://docs.oracle.com/javase/7/docs/api/index.html
3. Brian goetz, tim peierls, joshua bloch, joseph bowbeer, david holmes, doug

lea, java concurrency in practice, addison wesley professional, may 09, 2006,
isbn-10: 0-321-34960-1

4. Get started with jna, https://jna.dev.java.net
5. Herbert schildt, java™ 2: the complete reference, fifth edition, mcgraw-hill,

2002, isbn:0-07-222420-7
6. Hesham el-rewini, mostafa abd-el-barr, 2005, advanced computer architecture

and parallel, a john wiley & sons, inc publication.
7. Java Native Interface,

http://java.sun.com/javase/6/docs/technotes/guides/jni/index.html
8. Microsoft developer network (msdn): setprocessaffinitymask

http://msdn.microsoft.com/library/default.asp?url=/library/enus/dllproc
/base/setprocessaffinitymask.asp

9. Mike loukides, gian-paolo d. Musumeci, system performance tuning, second
edition, o'reilly, 2002, isbn : 0-596-00284-x

10. parallel programming? Well, it’s all about cpu affinity or how to set processor
affinity in wpf http://khason.net/blog/parallel-programming-well-
it%e2%80%99s-all-about-cpu-affinity-or-how-to-set-processor-affinity-in-
wpf/

11. Take charge of processor affinity,
http://www.ibm.com/developerworks/linux/library/l-affinity/index.html

12. The win32 programming tutorials for fun (and funny too),
http://www.installsetupconfig.com/win32programming/

